360 research outputs found

    The flux and source of energetic protons in Saturn's inner magnetosphere

    Get PDF
    The flux of energetic protons in Saturn's inner magnetosphere was observed in two channels from 48 to 63 and 63 to 160 MeV. Absorption features due to the G ring and the satellites Enceladus and Mimas were easily identifiable. The flux observed in the absorption slot of Mimas can be maintained by the decay of a cosmic ray albedo neutron flux of 0.007/sq cm/s/sr. This flux is entirely consistent with calculations of the neutron flux produced by galactic cosmic ray interactions with the rings of Saturn. The omnidirectional proton flux of 0.0082/sq cm/s at 2.734 R sub s requires a residence time of 30 years. Both the residence time and the energy spectrum are comparable to those found in the inner radiation belt of the Earth. The angular distribution is nearly isotropic in the Mimas slot and beyond 4R sub s. Otherwise the pitch angle distribution is pancake and is approximated by sin(n)theta with n in the range 2 to 7. This distribution is consistent with an isotropic neutron source in the ring plane

    Acceleration of protons at 32 Jovian radii in the outer magnetosphere of jupiter

    Get PDF
    During the inbound pass of Pioneer 10, a rapid ten-fold increase of the 0.2 to MeV proton flux was observed at 32 Jovian radii (R sub J). The total event lasted for 30 minutes and was made up of a number of superimposed individual events. At the time, the spacecraft was in the outer magnetosphere about 7 R sub J below the magnetic equator. Before and after the event, the proton flux was characteristic of the low flux level normally encountered between crossings of the magnetic equator. Flux changes at different energies were coherent within 1 minute; a time comparable to the time resolution of the data. The angular distributions were highly anisotropic with protons streaming towards Jupiter. A field-aligned dumbbell distribution was observed initially, and a pancake distribution just before the flux decayed to its pre-event value. The alpha particle flux changed as rapidly as the proton flux but peaked at different times. The energetic electron flux behaved differently; it increased gradually throughout the period

    Energetic protons in the Jovian magnetosphere

    Get PDF
    The time histories, angular distributions and energy spectra of energetic protons were measured over an energy range extending from 0.2 - 20 MeV for the four passes of Pioneers 10 and 11 through the Jovian magnetosphere. Azimuthal asymmetries appear to dominate with time variations also contributing to the very complex topology. On the inbound P-10 pass the expected corotation anisotropy was not observed in the outer magnetosphere supporting the probable existence of a planetary wind in this region. Near the dawn meredian particle streaming away from the planet begins at about 15 RJ. On both the P-10 inbound and P-11 outbound passes, there are regions where only partial corotation is achieved. In the mid-magnetosphere, field-aligned streaming away from the near-equatorial current sheet region is the most prominent feature. At mid-latitudes in the subsolar regime, the streaming pattern is more chaotic and its magnitude is smaller. Qualitative discussions are presented for a number of possible mechanisms which could produce this streaming

    Energetic particles in the pre-dawn magnetotail of Jupiter

    Get PDF
    A detailed account is given of the energetic electron and proton populations as observed with Voyagers 1 and 2 during their passes through the dawn magnetotail of Jupiter. The region between 20 and 150 R sub J is dominated by a thin plasma sheet, where trapped energetic electron and proton fluxes reach their maximum. Proton spectra can be represented by an exponential in rigidity with a characteristic energy of approximately 50 keV. Proton anisotropies were consistent with corotation even at 100 R sub J. A major proton acceleration event as well as several cases of field aligned proton streaming were observed. The flux of 0.4 MeV protons decreases by three orders of magnitude between 30 and 90 R sub J and then remains relatively constant to the magnetopause. Fine structure in the data indicate longitudinal asymmetries with respect to the dipole orientation. Electron spectra in the magnetosheath and interplanetary space are modulated by the Jovian longitude relative to the subsolar point

    Mission Report on the Orbiter Camera Payload System (OCPS) Large Format Camera (LFC) and Attitude Reference System (ARS)

    Get PDF
    The Orbiter Camera Payload System (OCPS) is an integrated photographic system which is carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC), a precision wide-angle cartographic instrument that is capable of producing high resolution stereo photography of great geometric fidelity in multiple base-to-height (B/H) ratios. A secondary, supporting system to the LFC is the Attitude Reference System (ARS), which is a dual lens Stellar Camera Array (SCA) and camera support structure. The SCA is a 70-mm film system which is rigidly mounted to the LFC lens support structure and which, through the simultaneous acquisition of two star fields with each earth-viewing LFC frame, makes it possible to determine precisely the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with Shuttle launch conditions and the on-orbit environment. The full-up OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on October 5, 1984, as a major payload aboard mission STS 41-G. This report documents the system design, the ground testing, the flight configuration, and an analysis of the results obtained during the Challenger mission STS 41-G

    Differentialdiagnose des pulmonalen Infiltrates nach Pneumothorax-Drainage

    Get PDF
    Zusammenfassung: Das Reexpansionsödem der Lunge stellt insgesamt eine seltene Komplikation sowohl im Rahmen der Pneumothoraxtherapie als auch bei der Behandlung des ausgedehnten Pleuraergusses dar. Die Pathogenese ist nicht vollständig geklärt und scheint multifaktoriell zu sein. Bei Auftreten von Atembeschwerden nach Reexpansion einer zuvor kollabierten Lunge sollte unbedingt an ein Reexpansionsödem als mögliche Ursache gedacht werde

    Applications of active microwave imagery

    Get PDF
    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft

    Positron-neutrino correlation in the 0^+ \to 0^+ decay of ^{32}Ar

    Get PDF
    The positron-neutrino correlation in the 0+→0+β0^+ \to 0^+ \beta decay of 32^{32}Ar was measured at ISOLDE by analyzing the effect of lepton recoil on the shape of the narrow proton group following the superallowed decay. Our result is consistent with the Standard Model prediction. For vanishing Fierz interference we find a=0.9989±0.0052±0.0036a=0.9989 \pm 0.0052 \pm 0.0036, which yields improved constraints on scalar weak interactions

    Molecular dynamics study of accelerated ion-induced shock waves in biological media

    Get PDF
    We present a molecular dynamics study of the effects of carbon- and iron-ion induced shock waves in DNA duplexes in liquid water. We use the CHARMM force field implemented within the MBN Explorer simulation package to optimize and equilibrate DNA duplexes in liquid water boxes of different sizes and shapes. The translational and vibrational degrees of freedom of water molecules are excited according to the energy deposited by the ions and the subsequent shock waves in liquid water are simulated. The pressure waves generated are studied and compared with an analytical hydrodynamics model which serves as a benchmark for evaluating the suitability of the simulation boxes. The energy deposition in the DNA backbone bonds is also monitored as an estimation of biological damage, something which is not possible with the analytical model
    • …
    corecore